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Abstract

The idea of b-metric-like space is presented first which generalizes the notion of

partial metric space, metric-like space and b-metric space. Some fixed point the-

orems which are established in this space are reviewed and elaborated. Intrigued

by the idea of extended b-metric space provided in 2017, extended b-metric-like

space is introduced. Some fixed point results are established in this new notion.

An example is also provided to validate the main result.
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Chapter 1

Introduction

In the early decades of twentieth century, functional analysis is originated from

classical analysis. Mainly, vector space and different operators are focused in

functional analysis. It is also related to topology, abstract linear algebra and

modern geometry. Its impetus originated from approximation theory, calculus of

variations, ordinary and partial linear differential equations and linear integral

equations has great impact on the development of modern ideas. At its earliest

stage, it was used to solve differential equations and has many wide applications

for non-linear problems. Recently, functional analytic methods are very useful in

different areas of mathematics.

Fixed point theory is one of those branches in functional analysis which are very

useful in the modern era. The fixed point theory provides us with very constructive

tools to study different problems in mathematics. In the last couple of decades, it

has become the main focus and interest for researchers in mathematics. Its origin

from the late 19th century is in sequential and unbroken estimation to construct

the existence, as well as uniqueness of results. This technique is used by many

recognized mathematicians.

In 1912, Brouwer [1] elaborated fixed point result for a square and a sphere in-

cluding their n-dimensional counter parts. In 1922, a very strong result in the

history of mathematics was given by a Polish mathematician, Stefan Banach, [2]

known as “Banach Contraction Principle”. According to this “every contraction

1



Introduction 2

has a unique fixed point in a complete metric space”. Mathematically we can say

“If (X , d) is a metric space and T : X → X be a self map, which satisfies the

following inequality for α0 ∈ [0, 1),

d(Tα, Tβ) ≤ α0d(α, β) ∀ α, β ∈ X ,

then T has unique fixed point”.

In 1961, by taking the compact space and considering α = 1, Edelstein [3] gen-

eralized the Banach contraction principle. In 1962, E Rakotch [4] worked on the

contractive mappings. He proved the existence of fixed point in complete metric

space using contractive mappings. While in 1964, Micheal Edelstein [5] worked on

the extension of BCP, using the non-expansive mappings.

In 1969, Kannan [6] extended Banach Contraction Principle and proved the exis-

tence and uniquesness of fixed point.

In 1975, Dass et al. [7] extended Banach contraction principle using rational

expressions, which later on, further extended by Dulhare [8] using the self mapping

in b-metric spaces (b-MS). In some generalizations, the contraction mapping is

weakened by changing the contraction conditions (for example, see[4, 9–11]).

The fixed point theory (FPT) was considered an analytical theory at its earlier

stage, but it is further divided into many other fields like topological and metric

FPT.

The idea of metric space was given by Maurice Frechet [12] in 1905. A number of

the generalizations of metric spaces exists in literature. Initially, the generalization

of metric spaces was done by Matthews [13] as partial metric space (PMS) and by

Czerwik [14] as b-metric space in the last decade of 20th century.

In 2014, another mathematician named Shukla [15] worked on these two spaces

and introduced another space named as partial b-metric space. In this dissertation,

b-metric-like space (b-MLS) will be focused on further useful results. There are

many results of fixed point in b-MLS (e.g. see[16, 17]).



Introduction 3

Similarly, many other mathematicians have worked on these spaces for example in

2012, Amini-Harandi [18] an Iranian mathematician presented the idea of metric-

like spaces (MLS) from PMS. He also mentioned the convergence, completeness

and Cauchy criteria for MLS to prove the fixed point results.

In 2013, on the basis of the concepts of b-MS, PMS and MLS, Alghamdi et al.

[19] introduced b-metric-like spaces. By providing some supportive results, authors

proved fixed point results for expansive mappings. They also worked on the b-MLS

which are partially ordered and proved fixed point theorems.

In 2014, Zhu et al. [20] introduced the notion of qausi b-metric-like spaces. He also

gives the criteria for the convergence and completeness, and proved some results

showing fixed points in qausi b-metric-like space. While in 2015, Chen et al. [21]

also worked on b-MLS. He generalizes many related results.

In 2017, Hammache et al. [22] also investigated b-MLS with weak contractions. In

the same year, Aydi et al. [17] established some common fixed point results using

implicit contractions. Many mathematicians [23–26] worked on b-MLS and qausi

b-metric-like spaces from 2013 to date.

In this dissertation, the main focus is to work on b-MLS. The background of b-

MLS, such as its definition, examples, completeness, convergence are adopted as

given in Alghamdi’s article. The detailed review of this article is presented in

this thesis. Alghamdi et al. also proved some basic results in b-metric-like space

to support the uniqueness of fixed point with expansive mappings. An article of

Kamran et al. [27] is the source of motivation to extend some fixed point results

in extended b-MLS.

The details for the rest of thesis work is as under:

Chapter 2:

This chapter includes seven sections. First section contains the definition and

examples of metric space. Second to fourth sections includes the definitions and

examples of different spaces. Section five includes some mappings on metric space.

Section six includes the theory of fixed point and last section contains some fixed

point results with different contractions.
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Chapter 3:

This chapter contains the detailed review of “Fixed point and coupled fixed point

theorems on b-metric-like space” by Alghamdi et al. [19].

Chapter 4:

In this chapter the idea of extended b-MLS is presented. Examples are also con-

structed for better understanding. Some fixed point results are also established in

this new space.

Chapter 5:

Provides conclusion of the dissertation.



Chapter 2

Fundamental Material

This chapter includes necessary material required for the dissertation. Different

sections are organized for the proper definitions and examples of different termi-

nologies. Also the sections for different mappings in metric spaces and fixed point

theory are organized to elaborate these terminologies clearly.

2.1 Metric Spaces

In 1905, Maurice Frechet [12] who was a french mathematician, gave the idea of

metric space. This idea provides a foundation for metric fixed point theory. This

section includes the definitions and examples of metric space.

Definition 2.1.1.

“A metric space is a pair (X , d), where X is a set and d is a metric on X (or

distance function on X ), that is, a real valued function defined on X × X → R

such that for all a1, a2 ∈ X we have:

(M1) d is real valued, finite and non negative.

(M2) d(a1, a2) = 0 if and only if a1 = a2.

(M3) d(a1, a2) = d(a2, a1) (Symmetry).

(M4) d(a1, a2) ≤ d(a1, a3) + d(a3, a2) (Triangle inequality).” [28]

5
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Example 2.1.1.

1. A distance defined on R as d : R× R→ R

d(a1, a2) = |a1 − a2|

is a metric and (R, d) is known as usual or standard metric space.

2. A metric in the n-dimensional space Rn with respect to the function d : Rn ×

Rn → R is defined as

d(α, β) =

{
n∑
i=1

(αi − βi)2
} 1

2

where α = (α1, α2, α3, ..., αn) and β = (β1, β2, β3, ..., βn) belongs to Rn.

Example 2.1.2.

Let X = R2, the set of all points in the coordinate plane. For α = (α1, α2) and

β = (β1, β2) in X , define

d(α, β) =

|α1 − β1| α2 = β2

|α1|+ |β1|+ |α2 − β2| α2 6= β2

(M1) By definition it is clear that d(α, β) ≥ 0.

(M2) if α2 = β2, then d(α, β) = 0⇔ |α1 − β1| = 0

⇔ α1 − β1 = 0⇔ α1 = β1 ⇔ (α1, α2) = (β1, β2)⇔ α = β

If α2 6= β2, then d(α, β) = |α1|+ |β1|+ |α2 − β2| 6= 0.

(M3)

d(α, β) =

|α1 − β1| α2 = β2

|α1|+ |β1|+ |α2 − β2| α2 6= β2

=

|β1 − α1| β2 = α2

|β1|+ |α1|+ |β2 − α2| β2 6= α2

= d(β, α)
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(M4)

Let γ = (γ1, γ2). It is clear by definition of d that

|α1 − β1| ≤ d(α, β), |β1 − γ1| ≤ d(β, γ) (2.1)

If α2 = γ2,

d(α, γ) = |α1 − β1| = |α1 − β1 + β1 − γ1|

By (2.5)

≤ |α1 − β1|+ |β1 − γ1| ≤ d(α, β) + d(β, γ)

⇒ d(α, γ) ≤ d(α, β) + d(β, γ).

If α2 6= γ2,

then β2 cannot be equal to both α2, γ2.

Let β2 6= α2,

then d(α, γ) = |α1|+ |γ1|+ |α2 − γ2|,∵ α2 6= γ2

⇒ d(α, γ) = |α1|+ | − γ1|+ |α2 − γ2|,∵ |γ1| = | − γ1|

⇒ d(α, γ) = |α1|+ | − β1 + β1 − γ1|+ |α2 − β2 + β2 − γ2|

≤ |α1|+ | − β1|+ |β1 − γ1|+ |α2 − β2|+ |β2 − γ2|

=

|α1|+ |β1|+ |β1 − γ1|+ |α2 − β2| β2 = γ2

|α1|+ |β1|+ |β1 − γ1|+ |α2 − β2|+ |β2 − γ2| β2 6= γ2

≤

|α1|+ |β1|+ |β1 − γ1|+ |α2 − β2| β2 = γ2

|α1|+ |β1|+ |α2 − β2|+ |β1|+ |γ1|+ |β2 − γ2| β2 6= γ2

⇒ d(α, γ) ≤ d(α, β) + d(β, γ),∀α, β, γ ∈ R2

If β2 = γ2, then the above inequality can be proved similarly. Hence d is a metric

on R2. This is known as Lift Metric.
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Figure 2.1: Case-I

Figure 2.2: Case-II
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Definition 2.1.2.

“Let X = (X , d) be a metric space. A point α0 ∈ X and a real number r > 0, we

define the open ball as

B(α0; r) = {α ∈ X |d(α, α0) < r},

and closed ball can be defined as

B(α0; r) = {α ∈ X |d(α, α0) ≤ r}.” [28]

Definition 2.1.3.

“A subset K of a metric space (X , d) is said to be open set if it contains a ball

about each of its point which is contained in M.” [28]

Definition 2.1.4.

“A subset M of a metric space (X , d) is said to be closed set if its compliment

(in X ) is open, that is, Mc = X −K.” [28]

Example 2.1.3.

From complex numbers we take X as the set of all bounded sequences so that each

element of X is a complex sequence

α = (η1, η2, η3, ....)

In short α = (ηk)

so for all k = 1, 2, 3, ...,

we have

|ηk| ≤ cα,

where the real number cα is dependent on α, but not on k. We take the metric

defined as

d(α, β) = sup
k∈N
|ηk − ξk|.

Where β = (ξk) ∈ X and N = {1, 2, 3, ...}. Then the space of all such sequences is

known as sequence space.
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Example 2.1.4.

Suppose that `1 representing the set of all sequences {αn} in R so that the series∑∞
n=1 |αn| is convergent. Define a function d : `1 × `1 → R as

d(α, β) =
∞∑
n=1

|αn − βn|, ∀α = {αn}, β = {βn} ∈ `1

is a metric space.

(M1) to (M3) are obvious.

(M4)

d(α, γ) =
∞∑
n=1

|αn − γn|

=
∞∑
n=1

|αn − βn + βn − γn|

≤
∞∑
n=1

[|αn − βn|+ |βn − γn|]

=
∞∑
n=1

|αn − βn|+
∞∑
n=1

|βn − γn|

⇒ d(α, γ) ≤ d(α, β) + d(β, γ), for all α, β, γ ∈ `1.

Hence (`1, d) is proved as a metric space.

Definition 2.1.5.

“A sequence {αn} in a metric space (X , d) is said to converge or to be convergent

if there is an α ∈ X ,

such that

lim
n→∞

d(αn, α) = 0,

α is called the limit of {αn} and we write,

lim
n→∞

αn = α,

or simply, αn → α.” [28]
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Example 2.1.5.

Let X = R, and consider a sequence {αn} =
1

n
, with

d(α, β) = |α− β|,

{αn} is convergent and lim
n→∞

d(αn, 0) = 0.

Definition 2.1.6.

“A sequence {αn} in a metric space (X , d) is said to be Cauchy (or fundamental)

if for every ε > 0 there is an N = N(ε) such that

d(αm, αn) < ε,

for all m,n > N.” [28]

Remark 2.1.1.

Every convergent sequence is known as Cauchy sequence but converse is not true.

Definition 2.1.7.

“The space X is said to be complete if every Cauchy sequence in X converges

(that is, has a limit which is an element of X ).” [28]

Remark 2.1.2.

The complex plane C and the real line R are the examples of complete metric

space.

Definition 2.1.8.

For the comparison of two binary data strings, we can use the hamming distance.

We can achieve this purpose by comparing two such binary strings which are equal

in length. Hamming distance is defined on the basis of bit positions describing

where the the two bits differ by each other. For the two strings p and q, Hamming

distance is denoted by d(p, q). It is calculated by performing XOR operation

between the two strings.

Example 2.1.6.

Let X be the set of all binary strings of length 9. Consider the two strings

100110110 and 101110011.
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100110110⊕ 101110011 = 001000101

As it contains three 1’s. So, its Hamming distance is described as

d(100110110, 101110011) = 3.

Example 2.1.7.

Let X be the set of all such functions α, β, .... which are real-valued functions.

These are functions of real variable s which is independent and also the functions

are continuous and defined on a closed interval K = [p, q]. Choosing a metric

defined as

d(α, β) = max
s∈K
|α(s)− β(s)|,

we get a metric space denoted by C[p, q]. This space is known as function space

because each of its point is a function.

2.2 Partial Metric Space

This section is dedicated to the notion of PMS. In 1980, the idea of PMS is

presented by Steve Matthews [13]. Matthews was working in the field of Computer

Science. For his studies, he had to encounter the self distances which are non-zero.

Matthews gave a new idea of metric space in which the self distances are non-zero.

His work was first published in 1994. This section includes the definition and

examples of PMS.

Definition 2.2.1.

“A partial metric on a (nonempty) set X is a function ρ : X ×X → R+ such that

for all a1, a2, a3 ∈ X :

(P1) a1 = a2 ⇔ ρ(a1, a1) = ρ(a1, a2) = ρ(a2, a2);

(P2) ρ(a1, a1) ≤ ρ(a1, a2);

(P3) ρ(a1, a2) = ρ(a2, a1);
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(P4) ρ(a1, a3) ≤ ρ(a1, a2) + ρ(a2, a3)− ρ(a2, a2).

A partial metric space is a pair (X , ρ) such that X is a nonempty set and ρ is

a partial metric on X .” [29]

Example 2.2.1.

Consider any X = R+ and let ρ : X × X → R+ which is defined as

ρ(α, β) = max {α, β},

this gives (X , ρ) as PMS.

(P1) to (P3) are obvious.

(P4)

ρ(α, γ) = max {α, γ}

≤ max {α + β − β, γ + β − β}

= max {α, β}+ max {β, γ} −max {β, β}

= ρ(α, β) + ρ(β, γ)− ρ(β, β).

⇒ ρ(α, γ) ≤ ρ(α, β) + ρ(β, γ)− ρ(β, β).

This shows that the given function is a PMS.

Definition 2.2.2.

“Let (X , ρ) be a partial metric space.

(i) A sequence {αn} in a partial metric space (X , ρ) is said to be convergent to

a point α ∈ X if and only if

ρ(α, α) = lim
n→∞

ρ(α, αn).

(ii) A sequence {αn} in a partial metric space (X , ρ) is called a Cauchy sequence

if there exist (and is finite)

lim
m,n→∞

ρ(αm, αn).
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(iii) A partial metric space (X , ρ) is called complete if and only if every Cauchy

sequence {αn} in X converges to a point α ∈ X

such that

ρ(α, α) = lim
m,n→∞

ρ(αm, αn).” [30]

2.3 b-Metric Space

The notion of b-metric space was firstly presented by Bakhtin [31] in 1989. Also

in 1993, Czerwik [14] gave its formal definition. Another mathematician Bourbaki

[32] also worked on this idea. This section includes the definition and examples of

the said space.

Definition 2.3.1.

“Let X be a set, and β ≥ 1 be a real number. A function dβ : X × X → R+ is

said to be a b-metric on X , and the pair (X , dβ) is called a b-metric space if, for

all a1, a2, a3 ∈ X ,

(BM1) dβ(a1, a2) = 0 if and only if a1 = a2,

(BM2) dβ(a1, a2) = dβ(a2, a1),

(BM3) dβ(a1, a3) ≤ β(dβ(a1, a2) + dβ(a2, a3)).” [33]

Remark 2.3.1.

i. As b-MS is originated from metric space, so if we choose β = 1, then the above

condition leads towards the metric space.

ii. The set of b-MS is bigger than the set of metric spaces.

Example 2.3.1.

Let (X , d) be a metric space. Then for a real number m > 1. we define a function

dβ : X × X → R+ by

dβ1(α, β) = (dβ(α, β))m,

this gives dβ1 as a b-MS with its coefficient β = 2m−1.
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For proof we will use the inequality

(
α + β

2

)m
≤ αm + βm

2

(α + β)m

2m
≤ αm + βm

2

(α + β)m ≤ 2m−1 (αm + βm) .

Since for every α, β, γ ∈ X we get

(BM1)

dβ1 (α, β) = (dβ (α, β))m = 0.

⇒ dβ (α, β) = 0.

⇒ α = β.

(BM2) Clearly, it holds.

(BM3)

dβ1 (α, γ) = (dβ (α, γ))m ≤ [dβ (α, β) + dβ (β, γ)]m .

≤ 2m−1 [dβ (α, β)m + dβ (β, γ)m] .

≤ 2m−1 [dβ1 (α, β) + dβ1 (β, γ)] .

⇒ dβ(α, γ) ≤ β [dβ(α, β) + dβ(β, γ)] .

Hence the given function dβ1 represents a b-MS having coefficient 2m−1.

Example 2.3.2.

Consider the set X = [0,∞) and define dβ : X × X → [0,∞) by

dβ (p, q) =| p− q |2, ∀ p, q ∈ X .

Then (X , dβ) is a b-MS with β = 2.

(BM1) and (BM2) are obvious.
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(BM3)

dβ (p, r) =| p− r |2

=| p− q + q − r |2

=| p− q |2 + | q − r |2 +2 | p− q || q − r |

≤ 2
[
| p− q |2 + | q − r |2

]
⇒ dβ (p, r) = 2 [dβ (p, q) + dβ (q, r)]

Hence the given function represents a b-MS having coefficient 2.

Remark 2.3.2.

“Let (X , dβ) be a b-metric space. Then in general b-metric is not continuous.” [34]

Following example illustrates the above remark.

Example 2.3.3.

Suppose X = N ∪ {∞}. Define a function dβ : X × X → R as

dβ(s, t) =



0 if s = t,

|1
s
− 1

t
| if one of the s, t is even and the other is also even or = ∞,

7 if one of the s, t is odd and others is also odd s 6= t or ∞

2 otherwise

Now we can check that for every s, t, r ∈ X , we get

dβ(s, r) ≤ 7

2
(dβ(s, t) + dβ(t, r)).

So (X , dβ) is a b-metric space with coefficient (β = 7
2
). Suppose xt = 2t for every

t ∈ N, then

dβ(2t,∞) =
1

2t
→ 0 as t → ∞,

now, {xt} → ∞, but d(xt, 1) = 2 6= 7 = d(∞, 1) as t→∞.

Definition 2.3.2.

“Let (X , dβ) be a b-metric space. A sequence {αn} in X is said to be:
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(i) Cauchy if and only if

lim
m,n→∞

dβ(αm, αn)→ 0 as m, n→∞.

(ii) Convergent if and only if there exist α ∈ X such that dβ(αn, α) → 0 as

n→∞ and we write

lim
n→∞

αn = α.

(iii) The b-metric space (X , dβ) is complete if every Cauchy sequence is conver-

gent.” [27]

2.4 Metric-Like Space

The generalized form of PMS is MLS. In 2012, the idea of MLS was presented by

Amini-Harandi [18]. This section includes the definitions and examples of MLS.

Definition 2.4.1.

“A mapping ϕ : X×X → R+, where X is non empty set, is said to be a metric-like

on X if for any a1, a2, a3 ∈ X , the following three conditions hold true for the

given mapping:

(ML1) ϕ(a1, a2) = 0⇒ a1 = a2;

(ML2) ϕ(a1, a2) = ϕ(a2, a1);

(ML3) ϕ(a1, a3) ≤ ϕ(a1, a2) + ϕ(a2, a3);

The pair (X , ϕ) is called a metric-like space.” [18]

Example 2.4.1.

Consider the set X = [0,∞), and ϕ : X × X → R by

ϕ(a1, a2) = max {a1, a2},

we claim that ϕ is a metric-like space as:
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(ML1)

ϕ(a1, a2) = max {a1, a2} = 0

⇒ a1 = a2

If the maximum is 0, then the other values of this function should must be less

than 0, which is not possible due to the given domain X = [0,∞). So, the other

values will also be 0.

(ML2)

ϕ(a1, a2) = max {a1, a2} = max {a2, a1} = ϕ(a2, a1)

(ML3)

ϕ(a1, a3) = max {a1, a3}

≤ max {a1, a2, a3}

≤ max {a1, a2}+ max {a2, a3}

So,

ϕ{a1, a3} ≤ ϕ{a1, a2}+ ϕ{a2, a3}

Definition 2.4.2.

“A sequence {αn} in a metric-like space (X , ϕ) is said to be convergent to a

point α ∈ X if and only if

lim
n→+∞

ϕ(αn, α) = ϕ(α, α),

exists.” [18]

Definition 2.4.3.

“A sequence {αn} of elements of X is called Cauchy if the limit lim
m,n→+∞

ϕ(αm, αn)

exists and is finite.” [18]

Definition 2.4.4.

“The metric-like space (X , ϕ) is called complete if for each ϕ-Cauchy sequence
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{αn}, There is some α ∈ X such that

lim
n→+∞

ϕ(αn, α) = ϕ(α, α) = lim
m,n→+∞

ϕ(αm, αn).” [18]

2.5 Mappings on Metric Spaces

This section addresses some important mappings on metric space. These mappings

play a fundamental role in the field of metric FPT.

Definition 2.5.1.

“Let (X , d) and (Y , da) be metric spaces. A mapping T : X → Y is said to be

continuous at a point α0 ∈ X if for every ε > 0, there is a δ > 0 such that

da(Tα, Tα0) < ε for all α satisfying d(α, α0) < δ.” [28]

Figure 2.3: Continuous Mapping

Theorem 2.5.2

“Consider a mapping T : X → Y of a metric space (X , d) into another metric

space (X , da). The mapping is said to be continuous at a point α0 ∈ X iff

αn → α0 yields T αn → T α0.” [28]
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Proof.

Let the mapping T be continuous at α0. Then for any ε > 0 there exists δ > 0

such that

d(α, α0) < δ yields d(T α, T α0) < ε.

Consider αn → α. So, an N exists there such that for each n > N,

implies

d(αn, α0) < δ.

Therefore, for every n > N,

d(T αn, T α0) < ε.

By definition, this yields

T αn → T α0.

Conversely we consider

αn → α.

This yields

T αn → T α.

To prove T is continuous at α0. Assume that this is not true. So there exists an

ε > 0 so that for every δ > 0 there exists an α 6= α0,

satisfying

d(α, αn) < δ but da(T α, T αn) ≥ ε.

Particularly, for δ =
1

n
there exists an αn satisfying

d(α, α0) <
1

n
but da(T α, T α0) ≥ ε.

Now, αn → α but (T αn) not converges to (T α0). This contradicts our supposition.

So, T αn → T α0.

Definition 2.5.3.

“Let (X , d) be a metric space. A mapping F : X → X is said to be Lipschitzian



Fundamental Material 21

if there exist a constant ε ≥ 0 such that

d(Fα,Fβ) ≤ εd(α, β),

for all α, β ∈ X .

The smallest number ε for which the above inequality is true is called Lipschitzian

constant.” [35]

Example 2.5.1.

Consider the set X = R2 consisting of all column vectors, and let a metric space

d is defined as

d(α, β) =
√

(α1 − β1)2 + (α2 − β2)2.

Assume F : X → X be a mapping which is defined as

F(s) = As, ∀ s ∈ X .

A =

3 0

0 3

 , s =

α1

β1

 and u =

α2

β2

 .

F(s) =

3 0

0 3

α1

β1



=

3α1

3β1



= 3

α1

β1


= 3s

d(F(s),F(u)) = d(3s, 3u)

=
√

(3α1 − 3β1)2 + (3α2 − 3β2)2

= 3d(s, u)

So, F is Lipschitzian.
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Example 2.5.2.

Consider a set X = R coupled with the usual metric. A mapping F : X → X

defined by F(s) = 2s. Then

d(F(s),F(t)) = |F(s)−F(t)|

= |2s− 2t|

= 2|s− t|

= 2d(s, t)

⇒ F(s) = 2s.

So, F is Lipschitzian and its Lipschitz constant is 2.

Definition 2.5.4.

“Let (X , d) be a metric space. A mapping F : X → X is said to be contraction

if there exist a constant ε ∈ [0, 1), such that for all α, β ∈ X

d(Fα,Fβ) ≤ εd(α, β),

where ε is called contraction constant.” [35]

Remark 2.5.1.

Geometrically, by a contraction, we mean any points α, β ∈ X have images Tα
and Tβ are more closer than those points.

Example 2.5.3.

Consider X = [0, 1] and the usual metric . Also let F : X → X defined as

F(α) =
1

b+ α
given (b > 1).

So,

d[F(α1),F(α2)] = d(
1

b+ α1

,
1

b+ α2

)

= | 1

b+ α1

− 1

b+ α2

|



Fundamental Material 23

= |(b+ α2)− (b+ α1)

(b+ α1)(b+ α2)
|

= | α2 − α1

(b+ α1)(b+ α2)
|

= |α1 − α2|
1

|(b+ α1)(b+ α2)|

< |α1 − α2|
1

|(b+ 0)(b+ 0)|

=
1

b2
|α1 − α2|

= εd(α1, α2) where ε =
1

b2

⇒ d[F(α1),F(α2)] < εd(α1, α2).

Hence, the given mapping is a contraction.

Example 2.5.4.

Consider F : Rn → Rn be any linear mapping with matrix

M = (mij)i,j=1,....,n

such that
n∑
j=1

|mij| < 1

for each i = 1, ...., n. It is a contraction with respect to the metric

d(ξ, η) = d ((ξ1, ξ2, ..., ξn), (η1, η2, ..., ηn)) = max
1≤i≤n

|ξi − ηi|.

Consider ξ = (ξ1, ξ2, ξ3, ξ4, ..., ξn) and η = (η1, η2, η3, η4, ..., ηn) where both ξ, η ∈

Rn and

ε = max
1≤i≤n

n∑
j=1

|mij| < 1.

Now 0 < ε < 1 and assuming F 6= 0.

Then

d(Fξ,Fη) = d

((
n∑
j=1

mijξj, ....,

n∑
j=1

mnjξj

)
,

(
n∑
j=1

mijηj, ....,

n∑
j=1

mnjηj

))
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= max
1≤i≤n

|
n∑
j=1

mijξj −
n∑
j=1

mijηj|

= max
1≤i≤n

|
n∑
j=1

mij(ξj − ηj)|

≤

(
max
1≤i≤n

n∑
j=1

|mij|

)
|(ξj − ηj)|

≤ εd(ξ, η).

Hence F is a contraction.

Definition 2.5.5.

“Let (X , d) be a metric space and F be a self map, F is called a contractive

mapping if, for all α, β ∈ X

d(F(α),F(β)) < d(α, β),

where α 6= β.” [35]

Example 2.5.5.

Let a usual metric space (X , d), and X = R. Consider F : X → X be a mapping

which is defined by

F(t) =
1

t
given (t > 1),

So,

d[F(t1),F(t2)] = d(
1

t1
,

1

t2
)

= | 1
t1
− 1

t2
|

= |t2 − t1
t1t2

|

= |t1 − t2
t1t2

|

= |t1 − t2||
1

t1t2
|

< |t1 − t2|

= d(t1, t2)
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⇒ d[F(t1),F(t2)] < d(t1, t2).

Hence, the given mapping is contractive.

Example 2.5.6.

Consider the set X = [1,∞) with the usual metric, and define F : X → X as

F(s) = s+
1

s
.

d(F(s),F(q)) = d

(
s+

1

s
, q +

1

q

)
= |(s+

1

s
)− (q +

1

q
)|

= |s− q +
1

s
− 1

q
|

= |s− q +
q − s
sq
|

= |(s− q)(1− 1

sq
)|

= |s− q||1− 1

sq
|

< |s− q|

⇒ F is contractive.

Definition 2.5.6.

“Let F : X → X be a mapping on metric space (X , d) into itself. We call F

non-expansive if,

d(Fα,Fβ) ≤ d(α, β),

for all α, β ∈ X .” [5]

Example 2.5.7.

Consider a set X = R coupled with the usual metric, a mapping F : X → X

defined as Fα = α.

Then

d(Fα,Fβ) = |Fα−Fβ|

= |α− β|

= d(α, β)
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Hence F is non-expansive.

Remark 2.5.2.

Contraction ⇒ Contractive ⇒ Non-Expansive ⇒ Lipschitzian.

Definition 2.5.7.

“Let (X , d) be a metric space. A mapping F : X → X on (X , d) such that

∀ α, β ∈ X : d(Fα,Fβ) ≥ d(α, β),

is called an expansive mapping.” [36]

Definition 2.5.8. Types of Expansive Mappings

“Let (X , d) be a metric space.

i. An expansion F : X → X on (X , d) such that

∀ α, β ∈ X : d(Fα,Fβ) = d(α, β),

is called an isometry, which is the weakest form of expansive mappings.

ii. An expansion F : X → X on (X , d) such that

∃ α, β ∈ X , α 6= β : d(Fα,Fβ) > d(α, β),

we call it a proper expansion.

iii. An expansion F : X → X on (X , d) such that

∀ α, β ∈ X , α 6= β : d(Fα,Fβ) > d(α, β),

we call it a strict expansion.

iv. Finally, an expansion F : X → X on (X , d) such that

∃ E > 1 ∀ α, β ∈ X : d(Fα,Fβ) > Ed(α, β),

we call it an anticontraction with expansion constant E.” [36]
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2.6 Fixed Point

Fixed point is a useful tool in mathematics which can be used to prove the existence

of solution of a differential equation, integral equation and eigen value equation.

Present section is providing the definition and examples of fixed point.

Definition 2.6.1.

“A fixed point of a mapping F : X → X of a set X into itself is an α0 ∈ X which

is mapped onto itself (is kept fixed by F),

that is,

F(α0) = α0,

the image F(α0) coincides with α0.”[28]

Example 2.6.1.

i. Consider F : R→ R be a mapping which is defined as

F(p) = p2 − 3p+ 3,

then p = 1, 3 are the fixed point of the given mapping. (see Figure 2.4)

ii. Consider F : R2 → R2 be a mapping which is defined as F(α) = Aα,

where

A =

1 0

0 1


then F(α) = Aα = α for all α ∈ R2. Here F has infinite fixed points. Geometri-

cally, this function rotates the point at the angle 2π.

iii. Consider F : C[0, 1

2
]→ C[0, 1

2
] be a mapping which is defined as

F(ε(t)) = t(ε(t) + 1) ∀ ε(t) ∈ C[0, 1

2
],

then ε(t) =
t

1− t
is a fixed point of F .
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iv. Consider F : R→ R be a mapping which is defined as

F(ε) = ε− eε

1 + eε
,

has no fixed point. (see Figure 2.5)

If we consider the real valued function, fixed point is the point of intersection of

the curve y = f(x) and the line y = x. This fact is shown by the following graphs

of different functions.

Figure 2.4: Graph of Function F(p) = p2 − 3p+ 3.

Figure 2.5: Graph of Function F(α) = α− eα

1 + eα
.
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Figure 2.6: Graph of Function F(p) = p3 + 1.

2.7 Some Classical Fixed Point Results

In this section, some fixed point results in different mappings are mentioned. All

of these results have their own importance in the history of mathematics.

Theorem 2.7.1 Banach Contraction Principle

“Consider a metric space X = (X .d), where X 6= φ. Let X is complete and

F : X → X be a contraction on X . Then F has precisely one fixed point.”[28]

Proof.

Choose α0 ∈ X and define {αn} inductively by iterating process

αn+1 = Fαn. (2.2)

From (2.6), starting with α0, we have

α1 = Fα0; α2 = Fα1 = F (Fα0) = F 2α0.

α3 = Fα2 = F (F 2α0) = F 3α0.

.

.

αn = F nα0.
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Since, F is a contraction, it follows that

d(αn, αn+1) = D(Fαn−1, Fαn) ≤ εd(αn−1, αn)

= d(Fαn−2, Fαn−1)

≤ ε(d(Fαn−2, Fαn−1)) = ε2d(αn−2, αn−1)

≤ ε3d(αn−3, αn−2)

.

.

≤ εnd(α0, α1).

⇒ d(αn, αn+1) ≤ εnd(α0, α1).

Now suppose that m > n and then by triangular inequality, we have

d(αn, αm) ≤ d(αn, αn+1 + ...+ d(αm−1, αm)).

≤ εnd(α0, α1) + εn+1d(α0, α1) + ...+ εm−1d(α0, α1).

≤ (εn + εn+1 + ...)d(α0, α1).

=

(
εn

1− ε

)
d(α0, α1).

Since, ε < 1 ⇒ εn

1− ε
→ 0 as n→∞.

It follows that the sequence {αn} is Cauchy. But X is also complete. Then, an

α ∈ X exists there such that αn → α.

then we claim the point ′α′ is a fixed point of the mapping F .

Since

lim
n→∞

αn = α,

and

lim
n→∞

αn+1 = α.

Now,

Fα = F ( lim
n→∞

αn) = lim
n→∞

Fαn = lim
n→∞

αn+1 = α.
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Hence, α is a fixed point of F .

For the uniqueness, suppose that β ∈ X is another fixed point of F , so that α 6= β

and F (β) = β.

d(α, β) = d(Fα, Fβ)

≤ εd(α, β)

< d(α, β) ∵ (0 ≤ ε < 1)

This can be possible only when

d(α, β) = 0 ⇒ α = β.

Hence F has a unique fixed point.

This result doesn’t only provide the criteria for the existence and uniqueness of

fixed point, but it also provides the technique to find that fixed point. The most

interesting fact is that it gives the error estimations.

Theorem 2.7.2 Extension of BCP on Partial Metric Space

“Let (X , ρ) be a complete partial metric space, ε ∈ [0, 1) and F : X → X be a

given mapping. Suppose for each α, β ∈ X the following condition holds:

ρ(Fα, Fβ) ≤ max{ερ(α, β), ρ(α, α), ρ(β, β)}.

Then:

1. the set Xρ is nonempty.

2. there is a unique α0 ∈ Xρ such that Fα0 = α0.

3. for each α ∈ Xρ the sequence {F nα}n≥1 converges w.r.t the metric ρs to α0.”[37]

Remark 2.7.1.

“If (X , ρ) is a partial metric space, then ρs(α, β) = 2ρ(α, β)− ρ(α, α)− ρ(β, β) is

a metric on X for all α, β ∈ X. ”[37]
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Theorem 2.7.3 Extension of BCP on b-Metric Space

“Let (X , dβ) be a complete b-metric space and let F : X → X satisfy

d[F (α), F (β)] ≤ Ψ[d(α, β)],

for all α, β ∈ X , where Ψ : R+ → R+ is increasing function such that

lim
n→∞

Ψn(s) = 0,

for each fixed > 0. Then F has exactly one fixed point z and

lim
n→∞

d[F n(α), z] = 0,

for each α ∈ X .”[14]

Theorem 2.7.4 Extension of BCP on Metric-Like Space

“Let (X , ϕ) be a complete metric-like space, and let F : X → X be a map such

that

ϕ(Fα, Fβ) ≤ ξ(M(α, β)),

for all α, β ∈ X , where

M(α, β) = max{ϕ(α, β), ϕ(α, Fα), ϕ(β, Fβ), ϕ(α, Fβ), ϕ(β, Fα), ϕ(α, α), ϕ(β, β)},

where ξ : [0,∞)→ [0,∞) is a non-decreasing function satisfying

ξ(s) < s for all s > 0, lim
p→s+

ξ(p) < s for all s > 0 and lim
s→∞

(s−ξ(s)) =∞.

This F has a fixed point.”[18]



Chapter 3

Fixed Point Results on

b-metric-like Spaces

In 2013, the idea of b-MLS was prsented by Alghamdi et al. [19] in which authors

generalized the concepts of PMS, b-MS and MLS. Some other authors also worked

on the existence as well as the uniqueness of fixed point in newly introduced b-

MLS and proved the uniqueness of fixed points as well [21]. To provide the detailed

review of this article, some definitions are presented first to give a good elaboration

of the main result.

3.1 Some Basic Tools

The idea of b-MLS is originated form the concepts of PMS with MLS and b-MS.

b-MLS is the generalized form of many spaces.

Definition 3.1.1.

Consider a non-empty set X , a function % : X ×X → [0,∞) is said to be a b-ML

such that for each a1, a2, a3 ∈ X and a constant κ ≥ 1, it holds the following.

(BM1) %(a1, a2) = 0⇒ a1 = a2;

(BM2) %(a1, a2) = %(a2, a1);

33
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(BM3) %(a1, a3) ≤ κ(%(a1, a2) + %(a2, a3)).

And (X , %) is known as b-metric-like space. [19]

Example 3.1.1.

We take X = [0,∞). Consider % : X 2 → [0,∞), Define a function by

%(a1, a2) = (a1 + a2)
2,

then it is a b-MLS and its constant is 2.

(BM1)and (BM2) are obvious.

(BM3)

%(a1, a2) = (a1 + a2)
2

≤ (a1 + a3 + a3 + a2)
2

= (a1 + a3)
2 + (a3 + a2)

2 + 2(a1 + a3)(a3 + a2)

≤ 2[(a1 + a3)
2 + (a3 + a2)

2]

= 2[%(a1, a3) + %(a3, a2)]

⇒ %(a1, a2) ≤ κ[%(a1, a3) + %(a3, a2)].

Hence, the given function is a b-metric-like space.

Remark 3.1.1.

Note that the above mentioned example is a b-MLS but clearly, it is not a b-MS

or a MLS.

Example 3.1.2.

Let X = [0,∞). Consider % : X 2 → [0,∞). Then we take a function

%(α, β) = (max{α, β})2

then (X , %) is a b-MLS and its constant is 2.

(BM1)and (BM2) are obvious.
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(BM3)

%(α, β) = (max{α, β})2

≤ (max{α, β, γ})2

≤ (max{α, β})2 + (max{β, γ})2

≤ 2[(max{α, β})2 + (max{β, γ})2]

⇒ %(α, β) ≤ κ[%(α, β) + %(β, γ)].

Hence, the given function is a b-MLS.

Definition 3.1.2.

Consider a b-MLS (X , %). Also let an α ∈ X and some r > 0, so

B(α, r) = {β ∈ X : |%(α, β)− %(α, α)| < r}

is an open ball whose radius is r and centered at α.

Definition 3.1.3.

Consider a b-MLS (X , %). Also consider a sequence {αn} containing the points of

the set X . Then any α ∈ X is said to be the limit point of {αn} if,

lim
n→∞

%(α, αn) = %(α, α),

and the sequence {αn} is said to convergent.

Definition 3.1.4.

Consider a sequence {αn} in a b-MLS (X , %), it is known as Cauchy sequence

iff,

lim
m,n→∞

%(αn, αm),

is a finite number.

Definition 3.1.5.

If every Cauchy sequence {αn} is convergent to α ∈ X , then the b-MLS is called

complete b-MLS.
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Proposition 3.1.1.

Consider (X , %) is a b-MLS. Let κ ≥ 1 and {αn} be a sequence in the set X such

that

lim
n→∞

%(αn, α) = 0,

then for all α ∈ X .

1. α is unique.

2.
1

κ
%(α, β) ≤ limn→∞ %(αn, β) ≤ κ%(α, β) for all β ∈ X .

Proof.

For the proof of (1.)

Using the assumption that there exists another β ∈ X such that

lim
n→∞

%(αn, β) = 0,

⇒ 0 ≤ %(β, α) ≤ κ( lim
n→∞

%(αn, β) + lim
n→∞

%(αn, α)) = 0,

this implies

%(α, β) = 0 ⇒ α = β.

Now, to prove (2.)

Since

%(α, γ) ≤ κ[%(α, β) + %(β, γ)].

Therefore,

1

κ
%(α, β)− lim

n→∞
%(αn, α) ≤ lim

n→∞
%(αn, β) ≤ κ(%(α, β) + lim

n→∞
%(αn, α))

⇒ 1

κ
%(α, β) ≤ lim

n→∞
%(αn, β) ≤ κ%(α, β) lim

n→∞
%(αn, α) ∀ β ∈ X .

Hence proved.

Definition 3.1.6.

Consider a b-MLS (X , %) and also assume that U is a subset of the set X . Then
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U is said to be open subset if for each α ∈ U there exists some r > 0 such that

U ⊇ B(α, r). [19]

Definition 3.1.7.

The set V is said to be closed subset of X if Vc is open in X . [19]

Proposition 3.1.2.

Consider a b-MLS (X , %) and let the set V be any subset of the set X . Then for

any sequence {αn} contained in V is closed if and only if {αn} converges to α for

any α ∈ V .

Proof.

Firstly, we assume V to be closed and α /∈ V . Then Vc is open. So, an r > 0 exists

there for which V ⊇ B(α, r). Also αn → α as n→∞. Therefore,

lim
n→∞

|%(αn, α)− %(α, α)| = 0.

So, for all n ≥ n0, there exists an n0 ∈ N, which gives

|%(αn, α)− %(α, α)| < r.

This leads to a contradiction, because for every n ≥ n0 there exists,

Vc ⊇ B(α, r) ⊇ {αn}.

As for every n ∈ N, {αn} is subset of V .

Conversely, we assume {αn} be any sequence in V convergent to α, this gives

α ∈ V . Letting β /∈ V to prove that there exists any r0 > 0,

which implies,

V ∩ B(β, r0) = φ.

Assuming contrarily that for every r > 0 implies

V ∩ B(β, r) 6= φ.
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Therefore, for every n ∈ N take,

αn ∈ V ∩ B(β,
1

n
) 6= φ.

This implies,

|%(αn, β)− %(β, β)| < 1

n
∀ n ∈ N.

Therefore, αn → β as n→∞. Which contradicts to our supposition that V gives

β ∈ V . Therefore, there exists r0 > 0 for every β /∈ V such that V ∩ B(β, r0) = φ.

Which confirms that, V is closed.

Lemma 3.1.3.

Consider a b-MLS (X , %). Also let X ⊃ {αj}mj=0. Then

%(αm, α0) ≤ K%(α0, α1) + ....+K%(αm−2, αm−1) +Km−1%(αm−1, αn).

Lemma 3.1.4.

Consider a b-MLS (X , %), and consider {βn} be any sequence in it. If for some µ

and K > 1, 0 < µ <
1

K
, and for every n ∈ N such that

%(βn, βn + 1) ≤ µ%(βn−1, β).

This leads to lim
m,n→∞

%(βm, βn) = 0.

Definition 3.1.8.

Consider a b-MLS (X , %) and define a mapping Ds : X × X → R+ by

Ds(ζ1, ζ2) = |2%(ζ1, ζ2)− %(ζ1, ζ1)− %(ζ2, ζ2)|.

Here, Ds(ζ1, ζ1) = 0 ∀ ζ1 ∈ X .

Definition 3.1.9.

Let ψIE denote the class of all functions E : (0,∞)→ (I2,∞) holding the condition

E(un)→ (I2)+ ⇒ un → 0, (3.1)

and I > 0.
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3.2 Fixed point Results

The idea of b-MLS is widely used by different researchers for the existence and

uniqueness of fixed point (See for example [38–42] ). This section includes some

results showing fixed points in b-MLS endowed with expansive mappings. These

results are generalization and extension of some old fixed point theorems. Some

useful examples are also provided to validate the results.

Theorem 3.2.1

Consider a b-MLS (X , d%) which is complete. Assume T : X → X be any mapping

which is onto and it satisfies;

%(Tα, Tβ) ≥ [Q+M min{Ds(α, Tα), Ds(β, Tβ), Ds(α, Tβ), Ds(β, Tα)}]%(α, β)

(3.2)

∀ α, β ∈ X , where Q > K,M ≥ 0. Then the mapping T has a fixed point.

Proof.

Assume any α0 ∈ X , as T is onto, then α1 ∈ X exists there,

such that

α0 = Tα1.

Applying this process further,

we have

αn = Tαn+1 for all n ∈ NU{0}.

So that if

αn0 = αn0+1 for each n0 ∈ NU{0},

then obviously αn0 is a fixed point.

Now by assuming

αn 6= αn+1,

for every n.
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Using α = αn and β = αn+1 in (3.2) gives

%(Tαn, Tαn+1) ≥[Q+M min{Ds(αn, Tαn), Ds(αn+1, Tαn+1),

Ds(αn, Tαn+1), D
s(αn+1, Tαn)}]%(αn, αn+1)

⇒ %(αn−1, αn) ≥[Q+M min{Ds(αn, αn−1), D
s(αn+1, αn),

Ds(αn, αn), Ds(αn+1, αn−1)}]%(αn, αn+1)

=Q%(αn, αn+1).

This implies

%(αn, αn+1) ≤ }%(αn−1, αn),

where } =
1

Q
<

1

K
.

Therefore Lemma 3.1.4 yields

lim
m,n→∞

dϑ(αn, αm) = 0.

Now, As lim
m,n→∞

%(αn, αm) = 0 exists finitely, which implies that the sequence {αn}

is Cauchy. As (X , dϑ) is a b-metric-like space and is also complete, this implies

that the sequence {αn} in X is convergent to some p ∈ X ,

such that

lim
m,n→∞

%(αn, p) = %(p, p) = lim
m,n→∞

%(αn, αm) = 0.

Since T is onto, so that some ω ∈ X exists there which implies

p = Tυ.

From (3.2), we have the following

%(αn, υ) =%(Tαn+1, Tυ)

≥[Q+M min{Ds(αn+1, Tαn+1), D
s(υ, Tυ), Ds(αn+1, Tυ),

Ds(υ, Tαn+1)}]%(αn+1, υ)

=[Q+M min{Ds(αn+1, αn), Ds(υ, p), Ds(αn+1, p),
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Ds(υ, αn)}]%(αn+1, υ).

Using limit n→∞, we have

0 = lim
n→∞

%(αn, p) ≥ Q lim
n→∞

%(αn+1, υ).

Hence we have,

lim
n→∞

%(αn+1, υ) = 0.

we get p = υ which implies p = Tp.

Corollary 1.

Consider (X , %) be a b-MLS which is also complete. Assume T : X → X which is

onto and it satisfies

%(Tα, Tβ) ≥ Q%(α, β) (3.3)

for each α, β ∈ X , and Q > K. This gives the fixed point of mapping T .

Example 3.2.1.

Consider X = [0,∞) and % : X × X → [0,∞) which is defined as

%(a1, a2) = (a1 + a2)
2.

It is obvious that, (X , %) is b-MLS with constant 2 and it is also complete. Define

a mapping T : X → X as

Ta1 =


7a1 ifa1 ∈ [0, 1),

6a1 + 2 ifa1 ∈ [1, 2),

5a1 + 4 ifa1 ∈ [2,∞).

Obviously, T is onto. Now, we check the following cases:

i. Assume that a1, a2 ∈ [1, 2), So

%(Ta1, Ta2) = (7a1 + 7a2)
2 = 49(a1 + a2)

2 ≥ 3(a1 + a2)
2 = 3%(a1, a2)
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ii. Assume that a1, a2 ∈ [1, 2), So

%(Ta1, Ta2) = (6a1+6a2+2)2 ≥ (6a1+6a2)
2 = 36(a1+a2)

2 ≥ 3(a1+a2)
2 = 3%(a1, a2)

iii. Assume that a1, a2 ∈ [2,∞), So

%(Ta1, Ta2) = (5a1+5a2+4)2 ≥ (5a1+5a2)
2 = 25(a1+a2)

2 ≥ 3(a1+a2)
2 = 3%(a1, a2)

iv. Assume that a1 ∈ [0, 1) and a2 ∈ [1, 2), So

%(Ta1, Ta2) = (7a1+6a2+2)2 ≥ (6a1+6a2)
2 = 36(a1+a2)

2 ≥ 3(a1+a2)
2 = 3%(a1, a2)

v. Assume that a1 ∈ [0, 1) and a2 ∈ [2,∞), So

%(Ta1, Ta2) = (7a1+5a2+4)2 ≥ (5a1+5a2)
2 = 25(a1+a2)

2 ≥ 3(a1+a2)
2 = 3%(a1, a2)

vi. Assume that a1 ∈ [1, 2) and a2 ∈ [2,∞), So

%(Ta1, Ta2) = (6a1+5a2+4)2 ≥ (5a1+5a2)
2 = 25(a1+a2)

2 ≥ 3(a1+a2)
2 = 3%(a1, a2)

So, %(Ta1, Ta2) ≥ Q%(a1, a2) for each a1, a2 ∈ X , and Q = 3 > 2 = κ. So it

satisfies the conditions in Corollary (3.1). Hence a1 = 0 is the fixed point of the

mapping T .

Theorem 3.2.2

Consider a b-MLS (X , %) which is complete. Using the assumption that T : X → X

is a self mapping which is onto and it satisfies

%(Tα, Tβ) ≥ E(%(α, β))%(α, β), (3.4)

for every α, β ∈ X , and E ∈ ψκE . This leads to a fixed point of the mapping T .

Proof.

Consider any α0 ∈ X , As in the given mapping, T is onto, This implies that
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α1 ∈ X exists there such that

α0 = Tα1.

Continuing the process further, we have

αn = Tαn+1 for every n ∈ NU{0}.

For some case if

αn0 = αn0+1 for any n0 ∈ NU{0},

then obviously αn0 is a point which is the fixed point of T . Then by assuming that

αn 6= αn+1 for every n. Taking α = αn and β = αn+1 and using in (3.4) it follows;

%(αn−1, αn) = %(Tαn, Tαn+1) ≥ E(%(αn, αn+1))%(αn, αn+1)

≥ κ2%(αn, αn+1) ≥ %(αn, αn+1).

Therefore, the sequence {%(αn, αn+1)} in R+ is decreasing sequence. So, for any

r > 0 so that

lim
n→∞

%(αn, αn+1) = r.

Then by taking the supposition contrarily that r > 0, Then by the above expres-

sion, we have

κ2
%(αn−1, αn)

%(αn, αn+1)
≥ %(αn−1, αn)

%(αn, αn+1)
≥ E(%(αn, αn+1)) ≥ κ2

Now as n→∞, by using limit, it leads to

lim
n→∞

E(%(αn, αn+1)) = κ2.

Therefore,

0 = lim
n→∞

E(%(αn, αn+1)) = r.

which leads to a contradiction, so r = 0. Now we claim

lim sup
m,n→∞

%(αn, αm) = 0.
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Assume on contrary

lim sup
m,n→∞

%(αn, αm) > 0.

Therefore, from (3.4), this implies

%(αn, αm) = %(Tαn+1, Tαm+1) ≥ E(%(αn+1, αm+1))%(αn+1, αm+1).

This implies,
%(αn, αm)

E(%(αn+1, αm+1))
≥ %(αn+1, αm+1).

Now, from the third property of b-MLS, it gives

%(αn, αm) ≤ κ%(αn, αn+1) + κ2%(αn+1, αm+1) + κ2%(αm+1, αm)

≤ κ%(αn, αn+1) +
%(αn, αm)

E(%(αn+1, αm+1))
+ κ2%(αm+1, αm).

Hence,

%(αn, αm) ≤ [1− κ2

E(%(αn+1, αm+1))
]−1(κ%(αn, αn+1) + κ2%(αm+1, αm)).

Taking m,n→∞ and using the facts that

lim sup
m,n→∞

%(αn, αm) > 0,

and

0 = lim
n→∞

%(αn, αn+1) = r,

we have

lim sup
m,n→∞

[1− κ2

E(%(αn+1, αm+1))
]−1 =∞,

this implies

lim sup
m,n→∞

E(%(αn+1, αm+1)) = (κ2)+,

therefore

lim sup
m,n→∞

%(αn+1, αm+1) = 0,

which again contradicts.
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Therefore,

lim sup
m,n→∞

%(αn, αm) = 0.

Now, as lim sup
m,n→∞

%(αn, αm) = 0, exists finitely, Hence it comes that {αn} is a Cauchy

sequence. As (X , d) is a b-MLS and is also complete. Also, the sequence {αn} is

convergent in the set X to some q ∈ X . Therefore,

lim
m,n→∞

%(αn, q) = %(q, q) = lim
m,n→∞

%(αn, αm) = 0.

For the onto mapping T , some ω belongs to X so that q = Tω. To prove ω = q,

let us assume on contrary that q 6= ω. Then the inequality (3.4) yields

%(αn, q) = %(Tαn+1, Tω) ≥ E(%(αn+1, ω))%(αn+1,ω).

Now in the above mentioned inequality, by proposition (3.1.1)(2) and limit n→∞

, this implies

1

κ
lim
n→∞

E(%(αn+1, q))%(q, ω) ≤ lim
n→∞

E(%(αn+1, ω)) lim
n→∞

%(αn+1, ω)

≤ lim
n→∞

%(αn, q)

= 0.

Therefore

lim
n→∞

E(%(αn+1, q)) = 0,

which leads to a contradiction.

So, κ2 ≤ limn→∞ E(%(αn+1, q)). As κ2E(u) for each u ∈ [0,∞).

Hence

q = ω

Therefore,

q = Tω = Tq.
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Corollary 2.

Consider a PMS (X , ρ) which is also complete. Using the assumption that T :

X → X be a self mapping which is onto and it satisfies

ρ(Tα, Tβ) ≥ E(ρ(α, β))ρ(α, β), (3.5)

for every α, β ∈ X , and E ∈ ψ1
E . This leads to a fixed point of T .

Corollary 3.

Consider a MLS (X , ϕ) which is also complete. Using the assumption that T :

X → X be a self mapping which is onto and it satisfies

ϕ(Tζ, Tη) ≥ E(ϕ(ζ, η))ϕ(ζ, η), (3.6)

for every ζ, η ∈ X , and E ∈ ψ1
E . This leads to a fixed point of T .

Corollary 4.

Consider a b-MS (X , dβ) which is also complete. Using the assumption that T :

X → X be a self mapping which is onto and it satisfies

dβ(Tα, Tβ) ≥ E(dβ(α, β))dβ(α, β), (3.7)

for every α, β ∈ X , and E ∈ ψκE . This leads to a fixed point of T .

Definition 3.2.3.

Let ψLJ denote the family of all functions J : (0,∞)→ (0,
1

L2
) holding the condi-

tion

J (un)→ (
1

L2
)+ ⇒ un → 0, (3.8)

and L > 0.

Theorem 3.2.4 Consider a partially ordered b-MLS (X , %) which is also com-

plete. Also consider a non-decreasing mapping N : X → X such that

%(Nα,Nβ) ≤ J (P(α, β))P(α, β) + I(Q(α, β))Q(α, β) (3.9)
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for each α, β ∈ X and α � β, where J ∈ ψκJ , I : [0,∞)→ [0,∞) is any bounded

function and

P(α, β) = max

{
%(α, β), %(α,Nα), %(β,Nβ),

%(α,Nβ), %(β, T α)

6κ

}

and

Q(α, β) = min {Ds(α,Nα), Ds(β,Nβ), Ds(α,Nβ), Ds(β,Nα)} .

Then it holds the following:

(i) α0 ∈ X exists there such that α0 � Nα0;

(ii) for any sequence {αn} ⊂ X which is increasing and is convergent to α ∈ X ,

then we have

αn � α

for each n ∈ N; this leads to the fixed point of N .

Corollary 5. Consider a partially ordered PMS (X , ρ) which is also complete.

Also consider a non-decreasing mapping N : X → X such that

ρ(Nα,Nβ) ≤ J (P(α, β))P(α, β) + I(Q(α, β))Q(α, β)

for each α, β ∈ X and α � β,

where J ∈ ψ1
J , I : [0,∞)→ [0,∞) is any bounded function and

P(α, β) = max

{
ρ(α, β), ρ(α,Nα), ρ(β,Nβ),

ρ(α,Nβ), ρ(β,Nα)

6

}

and

Q(α, β) = min {ρs(α,Nα), ρs(β,Nβ), ρs(α,Nβ), ρs(β,Nα)} .

Then it holds the following:

(i) α0 ∈ X exists there such that α0 � Nα0;

(ii) for any sequence {αn} ⊂ X which is increasing and is convergent to α ∈ X ,

then we have αn � α for each n ∈ N; this leads to the fixed point of N .
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Corollary 6. Consider a partially ordered b-MS (X , dβ) which is also complete.

Also consider a non-decreasing mapping N : X → X such that

dβ(Nα,Nβ) ≤ J (P(α, β))P(α, β) + I(Q(α, β))Q(α, β)

for each α, β ∈ X and α � β, where J ∈ ψκJ , I : [0,∞)→ [0,∞) is any bounded

function and

P(α, β) = max

{
dβ(α, β), dβ(α,Nα), dβ(β,Nβ),

dβ(α,Nβ), dβ(β,Nα)

4κ

}

and

Q(α, β) = 2 min {dβ(α,Nα), dβ(β,Nβ), dβ(α,Nβ), dβ(β,Nα)} .

Then it holds the following:

(i) α0 ∈ X exists there such that α0 � Nα0;

(ii) for any sequence {αn} ⊂ X which is increasing and is convergent to α ∈ X ,

then we have αn � α for each n ∈ N; this leads to the fixed point of N .



Chapter 4

Extended b-metric-like space

In 2013, Alghamdi et al. [19] investigated the idea of b-MLS. Providing necessary

definitions and examples, Alghamdi et al. proved the existence and uniqueness of

fixed point on expansive mappings in b-MLS. This chapter includes the extension

of b-MLS with necessary definitions, examples and a fixed point result in extended

b-MLS.

4.1 Extended b-metric-like space

This section includes the definitions and examples of extended b-MLS.

Definition 4.1.1.

Consider a set X which is non-empty and ϑ : X × X → [1,∞). A function

dϑ : X × X → [0,∞) is said to be an extended b-ML if for all a1, a2, a3 ∈ X . It

follows:

(dϑ1) dϑ(a1, a2) = 0⇒ a1 = a2;

(dϑ2) dϑ(a1, a2) = dϑ(a2, a1);

(dϑ3) dϑ(a1, a3) ≤ ϑ(a1, a3)[dϑ(a1, a2) + dϑ(a2, a3)]

Then (X , ϑ) is known as extended b-metric-like space.

49
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Remark 4.1.1.

i. In above definition b-MLS is a special case of extended b-MLS when ϑ(a1, a2) = S

with S ≥ 1.

ii. Further, MLS is a special case of extended b-MLS when ϑ(a1, a2) = S with

S = 1.

Example 4.1.1.

Let X = {1, 2, 3, ....} and dϑ : X × X → [0,∞) defined as

dϑ(p1, p2) = (p1 + p2)
2.

Consider a function ϑ : X × X → [1,∞) defined as

ϑ(p1, p2) =
p1 + p2 + 2

p1 + p2
.

Then (X , dϑ) is an extended b-MLS.

(dϑ1) and (dϑ2) are obvious.

(dϑ3) To prove dϑ(p1, p3) ≤ ϑ(p1, p3)[dϑ(p1, p2) + dϑ(p2, p3)],

we proceed as follows.

dϑ(p1, p3) = (p1 + p3)
2

≤ [(p1 + p2)
2 + (p2 + p3)

2]

≤ p1 + p3 + 2

p1 + p3
[(p1 + p2)

2 + (p2 + p3)
2]

= ϑ(p1 + p3)[dϑ(p1, p2) + dϑ(p2, p3)]

⇒ dϑ(p1, p3) ≤ ϑ(p1 + p3)[dϑ(p1, p2) + dϑ(p2, p3)].

Hence proved that the given mapping is an extended b-MLS.

Example 4.1.2.

Consider a set X = {0, 1, 2, 3, .....} = [0,∞) and dϑ : X × X → [0,∞) and is

defined as

dϑ(p1, p2) = [max{p1, p2}]2.
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Consider a function ϑ : X × X → [1,∞) defined as

ϑ(p1, p2) = 2p1 + p2 + 2.

Then (X , dϑ) is an extended b-MLS.

(dϑ1) and (dϑ2) are obvious.

(dϑ3) To prove dϑ(p1, p3) ≤ ϑ(p1, p3)[dϑ(p1, p2) + dϑ(p2, p3)],

we proceed as follows.

max{p1, p3}2 ≤ max{p1, p2, p3}2

≤ max{p1, p2}2 + max{p2, p3}2

≤ (2p1 + p3 + 2)[max{p1, p2}2 + max{p2, p3}2] (∵ 2p1 + p2 + 2 > 1).

= ϑ(p1, p3)[ϑ(p1, p2) + ϑ(p2, p3)]

⇒ dϑ(p1, p3) ≤ ϑ(p1, p3)[ϑ(p1, p2) + ϑ(p2, p3)].

Hence proved that it is an extended b-MLS.

Definition 4.1.2.

Consider an extended b-MLS (X , dϑ). It induces a topology τdϑ on X based on

the family of open dϑ-balls

Bdϑ(α, r) = {β ∈ X : |dϑ(α, β)− dϑ(α, α)| < r},

for all r > 0 and α ∈ X .

Definition 4.1.3.

Assume that (X , dϑ) is an extended b-MLS having coefficient ϑ(α, β), and let a

sequence {αn} in X and α ∈ X , then.

i. {αn} is convergent if for α ∈ X , we have

lim
n→+∞

dϑ(α, αn) = dϑ(α, α).
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ii. {αn} is a Cauchy sequence if and only if

lim
n→∞

dϑ(αn, αm),

exists finitely.

iii. An extended b-MLS (X , dϑ) is called complete iff each sequence {αn} in X

which is Cauchy in X is convergent to α ∈ X that is

lim
n→∞

dϑ(αn, αm) = dϑ(α, α) = lim
n→∞

dϑ(αn, α).

Definition 4.1.4.

Assume that (X , dϑ) be an extended b-MLS and also assume U is subset of X . U

is said to be open subset in the set X if for every α ∈ U some r > 0 exists there

such that U ⊇ B(α, r).

Definition 4.1.5.

Assume that (X , dϑ) be an extended b-MLS and also assume V is a subset of X .

V is said to be closed subset of X if Vc is open in the set X if for every α ∈ U

there exists some r > 0 such that U ⊇ B(α, r).

Proposition 4.1.1.

Assume that (X , dϑ) be an extended b-MLS, and consider a sequence {αn} in the

set X such that

lim
n→+∞

dϑ(αn, α) = 0.

Then ′α′ is unique.

Proof.

Consider there is a β ∈ X , we have

lim
n→0

dϑ(α, β) = 0,

then

0 ≤ dϑ(β, α) ≤ ϑ(α, β)[ lim
n→∞

dϑ(αn, β) + lim
n→∞

dϑ(αn, α)] = 0.
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Therefore from (dϑ.1), we get

β = α.

Definition 4.1.6.

Consider an extended b-MLS (X , dϑ). we define Ds : X × X → [0,∞) by

Ds(ζ, η) = |2dϑ(ζ, η)− dϑ(ζ, ζ)− dϑ(η, η)|.

Obviously, Ds(ζ, ζ) = 0 for all ζ ∈ X .

Proposition 4.1.2.

Consider an extended b-MLS (X , dϑ) and the set V be any subset of the set X .

Then for any sequence {αn} contained in V is closed if and only if {αn} converges

to α for any α ∈ V .

Proof.

Firstly, we assume the set V to be closed and α /∈ V . Then Vc is open in the set

X . An r > 0 exists there for which V ⊇ Bdϑ(α, r).

Also

αn → α as n→∞.

Therefore,

lim
n→∞

|dϑ(αn, α)− dϑ(α, α)| = 0.

So, for all n ≥ n0,

there exists an n0 ∈ N, which implies

|dϑ(αn, α)− dϑ(α, α)| < r.

This leads to a contradiction, because for every n ≥ n0 there exists,

Vc ⊇ Bdϑ(α, r) ⊇ {αn}.

As for every n ∈ N, {αn} is subset of V .
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Conversely, we assume {αn} be any sequence in V convergent to α, this gives

α ∈ V . Letting β /∈ V to prove that there exists any r0 > 0,

which implies

V ∩ Bdϑ(β, r0) = φ.

Assuming contrarily for every r > 0, we get

V ∩ Bdϑ(β, r) 6= φ.

Therefore, for every n ∈ N take,

αn ∈ V ∩ Bdϑ(β,
1

n
) 6= φ.

This implies,

|dϑ(αn, β)− dϑ(β, β)| < 1

n
∀ n ∈ N.

Therefore,

αn → β as n→∞.

Which contradicts to our supposition that V gives β ∈ V . Therefore, there exists

r0 > 0 for every β /∈ V such that V ∩ Bdϑ(β, r0) = φ. Which confirms that, V is

closed.

Lemma 4.1.3.

Consider (X , dϑ) be an extended b-MLS and is also complete such that dϑ is a

continuous functional and {αn} be a sequence in X . Let α0 ∈ X be an arbitrary

element of X . Consider {αn} = {T n(α0)}. If there is a mapping T : X → X , it

satisfies;

dϑ(αn, αn+1) ≤ µdϑ(αn−1, αn), (4.1)

for any 0 < µ <
1

κ
, and κ ∈ [0, 1). So, for any α0 ∈ X ,

lim
m,n→∞

ϑ(αn, αm) <
1

µ
.
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Then it is a Cauchy sequence.

Proof.

Consider any α0 ∈ X arbitrarily, then we define an iterative sequence {αn} by,

α0, Tα0 = α1, α2 = Tα1 = T (Tα0) = T 2(α0), ....., αn = T n(α0), ...

Then by successively applying (4.1), we get

dϑ(αn, αn+1) ≤ µndϑ(α0, α1). (4.2)

Then by (4.2) and triangular inequality,

for some m > n, we get

dϑ(αn, αm) ≤ϑ(αn, αm)µndϑ(α0, α1) + ϑ(αn, αm)ϑ(αn+1, αm)µn+1dϑ(α0, α1)

+ ......+ ϑ(αn, αm)ϑ(αn+1, αm)ϑ(αn+2, αm).......ϑ(αm−2, αm)

ϑ(αm−1, αm)µm−1dϑ(α0, α1)

≤ dϑ(α0, α1)[ϑ(α1, αm)ϑ(α2, αm)....ϑ(αn−1, αm)ϑ(αn, αm)µn

+ ϑ(α1, αm)ϑ(α2, αm)....ϑ(αn, αm)ϑ(αn+1, αm)µn+1

+ ....+ ϑ(α1, αm)ϑ(α2, αm)....ϑ(αn, αm)ϑ(αm−1, αm)

....ϑ(αm−2, αm)ϑ(αm−1, αm)µm−1]

Since,

lim
m,n→∞

ϑ(αn+1, αm)µ < 1,

so this implies that the series
∑∞

k=1 µ
n
∏n

i=1 ϑ(αi, αm) is convergent by ratio test

for any m ∈ N.

Let,

S =
∞∑
k=1

µn
n∏
i=1

ϑ(αi, αm),

and

Sn =
∞∑
j=1

µj

j∏
i=1

ϑ(αi, αm).
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For m > n, it follows from the above inequality

dϑ(αn, αm) ≤ dϑ(α0, α1)[Sm−1 − Sn−1].

⇒ lim
m,n→∞

dϑ(αn, αm) ≤ dϑ(α0, α1)[Sm−1 − Sn−1] = 0.

⇒ lim
m,n→∞

dϑ(αn, αm) = 0.

As lim
m,n→∞

dϑ(αn, αm) = 0 is finite. Hence the sequence {αn} is Cauchy.

Theorem 4.1.7

Consider (X , dϑ) be an extended b-MLS which is also complete. Assume T : X →

X be a mapping which is onto and it satisfies;

dϑ(Tα, Tβ) ≥ [P +N min{Ds(α, Tα), Ds(β, Tβ), Ds(α, Tβ), Ds(β, Tα)}]dϑ(α, β),

(4.3)

for each α, β ∈ X , where P > κ,N ≥ 0. This leads to a fixed point of the mapping

T .

Proof.

Assume any α0 ∈ X , as T is onto, then α1 ∈ X exists there such that

α0 = Tα1.

Applying this process further, we have

αn = Tαn+1 for every n ∈ NU{0}.

For some case if

αn0 = αn0+1 for any n0 ∈ NU{0},

then obviously αn0 is a fixed point of the mapping T .

Now by assuming

αn 6= αn+1 for every n.
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Using α = αn and β = αn+1 in (4.3), we have

dϑ(Tαn, Tαn+1) ≥[P +N min{Ds(αn, Tαn), Ds(αn+1, Tαn+1),

Ds(αn, Tαn+1), D
s(αn+1, Tαn)}]dϑ(αn, αn+1).

This implies,

dϑ(αn−1, αn) ≥[P +N min{Ds(αn, αn−1), D
s(αn+1, αn), Ds(αn, αn),

Ds(αn+1, αn−1)}]dϑ(αn, αn+1)

= Pdϑ(αn, αn+1).

This implies

dϑ(αn, αn+1) ≤ ldϑ(αn−1, αn),

Where l =
1

P
<

1

κ
.

Then by Lemma 4.1.3,

we get lim
m,n→∞

dϑ(αn, αm) = 0.

Now, As lim
m,n→∞

dϑ(αn, αm) = 0. exists finitely, which implies that the sequence

{αn} is a Cauchy sequence. As (X , dϑ) is an extended b-MLS and is also complete,

this implies {αn} in the set X is convergent to some q ∈ X , such that

lim
m,n→∞

dϑ(αn, q) = dϑ(q, q) = lim
m,n→∞

dϑ(αn, αm) = 0.

Since the mapping T is onto, so ω ∈ X exists there which implies q = Tω. From

(4.3), we have the following

dϑ(αn, ω) =dϑ(Tαn+1, Tω)

≥[P +N min{Ds(αn+1, Tαn+1), D
s(ω, Tω), Ds(αn+1, Tω),

Ds(ω, Tαn+1)}]dϑ(αn+1, ω).

=[P +N min{Ds(αn+1, αn), Ds(ω, q), Ds(αn+1, q),

Ds(ω, αn)}]dϑ(αn+1, ω).
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Using limit n→∞, we have

0 = lim
n→∞

dϑ(αn, q) ≥ P lim
n→∞

dϑ(αn+1, ω).

This implies,

lim
n→∞

dϑ(αn+1, ω) = 0.

we have q = ω,

which implies q = Tq.

In the above mentioned theorem if we consider N = 0. This leads to the following.

Corollary 7.

Consider (X , dϑ) is an extended b-MLS which is also complete. Assume that

T : X → X be a mapping which is onto and it satisfies

dϑ(Tζ, Tη) ≥ Pdϑ(ζ, η), (4.4)

for every α, β ∈ X , where P > κ. This leads to the fixed point of the mapping T .

Example 4.1.3. Consider a set X = [0,∞) and dϑ : X × X → [0,∞) defined as

dϑ(α, β) = (α + β)2.

And ϑ : X × X → [1,∞) defined as

ϑ(α, β) =
α + β + 2

α + β
.

Clearly, (X , dϑ) is an extended b-MLS. Define T : X → X as

Tα =


5α ifα ∈ [0, 1)

6α + 2 ifα ∈ [1, 2),

5α + 4 ifα ∈ [2,∞).

As T is onto. So, now we check the following cases:
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i. Assume that α, β ∈ [0, 1), so

dϑ(Tα, Tβ) = (5α + 5β)2 = 25(α + β)2 ≥ 3(α + β)2 = 3dϑ(α, β).

ii. Assume that α, β ∈ [1, 2), so

dϑ(Tα, Tβ) = (6α+6β+2)2 ≥ (6α+6β)2 = 36(α+β)2 ≥ 3(α+β)2 = 3dϑ(α, β).

iii. Assume that α, β ∈ [2,∞), so

dϑ(Tα, Tβ) = (5α+5β+4)2 ≥ (5α+5β)2 = 25(α+β)2 ≥ 3(α+β)2 = 3dϑ(α, β).

iv. Assume that α ∈ [0, 1) and β ∈ [1, 2), so

dϑ(Tα, Tβ) = (5α+6β+2)2 ≥ (5α+5β)2 = 25(α+β)2 ≥ 3(α+β)2 = 3dϑ(α, β).

v. Assume that α ∈ [0, 1) and β ∈ [2,∞), so

dϑ(Tα, Tβ) = (5α+5β+4)2 ≥ (5α+5β)2 = 25(α+β)2 ≥ 3(α+β)2 = 3dϑ(α, β).

vi. Assume that α ∈ [1, 2) and β ∈ [2,∞), so

dϑ(Tα, Tβ) = (6α+5β+4)2 ≥ (5α+5β)2 = 25(α+β)2 ≥ 3(α+β)2 = 3dϑ(α, β).

So, dϑ(Tα, Tβ) ≥ Pdϑ(α, β) for each α, β ∈ X , and P = 3 > 2 = κ.

So it satisfies the conditions in Corollary 7. Hence α = 0 is a fixed point of the

mapping T .



Chapter 5

Final Remarks

The dissertation comes to its end in the following manner:

• The dissertation is started with brief introduction, pointing out the related

history and work done by many mathematicians.

• As supportive material, some abstract spaces like metric space, partial met-

ric space, b-metric space and metric-like space are elaborated with proper

examples, convergence, completeness and Cauchy criteria.

• A section is mentioned for brief discussion on fixed point theory. This helps

to understand the existence and uniqueness of the fixed point in main results.

• Different mappings are also elaborated for better understanding of expansive

mappings, that are used in the main results.

• This research is based on b-metric-like space. A detailed review of the paper

“Fixed point and coupled fixed point point on b-metric-like spaces”. Defini-

tion and examples of b-metric-like space are elaborated. Some basic results

are also mentioned which are helpful for the main result. The main result

is based on expansive mappings providing the existence and uniqueness of

fixed point.

• Inspired from the paper of Alghamdi et al. and taking inspiration from

the paper of Kamran et al. an extended b-metric-like space is investigated.

60
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Some basic tools such as convergence and completeness are provided. Some

examples are verified for better understanding.

• Providing some basic results, the main result is elaborated which is based on

expansive mapping and showing the existence and uniqueness of fixed point.

An example is also provided to validate the result.

• In future,

i. the application of given result can be provided.

ii. using the idea of extended b-metric-like space, one can establish further

results.
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